ABSTRACT

Genome-scale studies of population structure and high-resolution mapping of genetically complex traits both require techniques for accurately and efficiently genotyping large numbers of polymorphic sites in multiple individuals. Many high-throughput genotyping technologies require the purchase of expensive equipment or consumables and are therefore out of reach of some individual research laboratories. Conversely, less expensive technologies are often labor intensive so that the effort involved in typing large numbers of samples or polymorphic sites is prohibitive. Here we present a method of fluorescently post-labeling restriction digestion using standard dye-terminator sequencing chemistry so that RFLP and AFLP products can be visualized on an automated sequencer. This labeling method is efficient, inexpensive, easily multiplexed, and requires no unusual equipment or reagents, thus striking a balance between cost and throughput that should be appropriate for many research groups and core facilities.

INTRODUCTION

Restriction endonucleases have long been used in population studies of allelic variation, where the presence or absence of a cut site is indicative of a mutation in the enzyme target sequence. In genetically well-characterized organisms, diagnostic RFLPs are often used as markers for previously characterized alleles. In organisms with less well-studied genetics, the selective amplification of anonymous restriction digestion products (e.g., AFLPs) (8) has also been used with considerable success (5,9). Although they are extremely powerful in the appropriate contexts, many existing RFLP and AFLP methods have limitations in throughput, sensitivity, or consumable cost that lessen their utility in many individual research laboratories. Traditionally, RFLP and AFLP products have been electrophoretically resolved on either agarose or acrylamide slab gels, with the digested fragments visualized by ethidium bromide staining or radiolabeling. Existing fluorescence-based RFLP and AFLP methods use labeled amplification primers (1,3,4,6) that could cost over $100 apiece (Research Genetics, Huntsville, AL, USA). This quickly increases the cost of an experiment using multiple primers and, in the case of RFLP, only allows the visualization of a single terminal fragment, thus losing all sequence information 3′ of the first restriction cut site. To increase RFLP information content and allow higher RFLP and AFLP throughput at lower costs, we have developed a simple and inexpensive method for post-labeling restriction digestion fragments using “off-the-shelf” sequencing chemistry before separation on an automated sequencer. We call this labeling method fluorescent RFLP (fRFLP).

Briefly, we amplify the target locus in a standard PCR and then digest the product with a restriction enzyme that leaves a 5′ overhang. This overhang acts as a template for the single base incorporation of a fluorescent dye-terminator nucleotide from a standard cycle sequencing kit. Thus labeled, the fragments are resolved on a capillary-based sequencer. Multiplexing is facilitated by the high resolution of the sequencer and its ability to read simultaneously multiple fluor wavelengths. This label-
ing method can be applied in an AFLP context by using adapters and unla-
beled primers containing a restriction enzyme recognition sequence that can be
cut and fluorescently labeled after the final, selective, AFLP amplifica-
tion. Fluorescent AFLP (fAFLP) pro-
Table 1. Post-Digestion Cost of fRFLP and fAFLP

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Stage</th>
<th>Per-Site Cost for Multiplexed Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simplex</td>
<td>3-fold#</td>
</tr>
<tr>
<td>Exonuclease I</td>
<td>sample</td>
<td>preparation</td>
</tr>
<tr>
<td>Shrimp alkaline phosphatase</td>
<td>sample</td>
<td>preparation</td>
</tr>
<tr>
<td>DTCS label</td>
<td>labeling</td>
<td>0.163</td>
</tr>
<tr>
<td>10× Seq. Buffer</td>
<td>labeling</td>
<td>0.116</td>
</tr>
<tr>
<td>Separation Buffer</td>
<td>electrophoresis</td>
<td>0.490</td>
</tr>
<tr>
<td>Separation Gel</td>
<td>electrophoresis</td>
<td>0.550</td>
</tr>
<tr>
<td>Size Standard-600</td>
<td>electrophoresis</td>
<td>0.309</td>
</tr>
<tr>
<td>TOTAL (US dollars)</td>
<td></td>
<td>1.799</td>
</tr>
</tbody>
</table>

*a Multiplex assumes all three fluor channels are used with either one, two, or three
amplification products in each channel. It is assumed that digested reactions are
pooled for a single labeling reaction when more than one product is represented in
each channel and that each product queries only a single polymorphic site.
Estimated per-site costs vary slightly with other multiplex structures.

MATERIALS AND METHODS

fRFLP

Here we illustrate fRFLP by using the method to distinguish *Attacin A* alleles
generated by gene conversion in the *Attacin AB* cluster of *Drosophila melan-
gaster* (7). DNA from *D. melanogaster* lines 2CPA 1, 2CPA 14, 2CPA 105,
and 2CPA 129 was amplified using primers Att98-1 and Att98-2 (7) under
standard PCR conditions. PCR was carried out for 35 cycles with 45-s anneal-
ing and extension steps at 58°C and 72°C, respectively. Following amplifica-
tion, 15 µL each PCR product were incu-
bated overnight at 37°C with 5 U each
enzyme in single digestions. For sim-
licity, only one amplification product
was digested in each of these reactions,
but we have had excellent success mul-
tiplexing by pooling distinct PCRs at the
digestion stage (unpublished results).

The restriction digestion reactions
were labeled using components of the
DCTS kit, with extra 10× sequencing
buffer ordered directly from the manu-
facturer. The molar concentrations of
the materials in this kit are proprietary,
so we can only provide volume mea-
sures of reagents, but we have found
this labeling reaction to be robust over
a wide range of template, terminator,
and DNA polymerase concentrations.
For the present demonstration, each la-
belling reaction included 1 µL digested
DNA, 1.9 µL 10× Sequencing Buffer,
and 33 nL sequencing DNA poly-
merase. Only the fluorescent terminator
nucleotide specific to each digestion
were included in the labeling reactions
(ddGTP for *DpnII*, ddCTP for *MspI*,
and ddUTP for *MseI*). Thirty-three
nanoliters of fluorescent terminator nu-
cleotide were used in the ddCTP and
ddUTP labeling reactions, but 100 nL
buffer, which obviates the need for a
buffer change at this step. Five micro-
liters of each PCR product were incu-
bated overnight at 37°C with 5 U each

fAFLP

We performed AFLP on DNA ex-
tracted from hydrothermal vent tube-
worms, *Ridgeia pachyptila* (Polychaeta:

![Image](https://via.placeholder.com/150)
Siboglinidae), collected at the Endeavor Segment of the Juan de Fuca Ridge in the northeast Pacific Ocean. Genomic DNA was extracted using a standard phenol:chloroform technique (2), and AFLP was carried out using AFLP® Analysis System I and AFLP Starter Primer kits (Invitrogen, Carlsbad, CA, USA), which follow the protocol of Vos et al. (8). DNA (250 ng) from each individual served as the starting template. For fAFLP, the final amplification was performed with a selective extension of -AGG on the EcoRI adapter primer and -CTC on the MseI adapter primer. In this example, we make use of the fact that the MseI adapter and primer contain a recognition site for the four-cutting restriction enzyme DdeI.

After the selective amplification, 5 µL each AFLP amplification were incubated with 2.5 U exonuclease I and 1 U shrimp alkaline phosphatase for 1 h at 37°C, followed by 15 min at 80°C. The reactions were digested overnight at 37°C with 2.5 U DdeI (New England Biolabs), and 1 µL of the digestion was labeled with ddUTP as described earlier. Following labeling, 5 µL stop solution and 60 µL ice-cold 95% ethanol were added to each of the fAFLP reactions, which were then centrifuged for 20 min at 1800×g. The pellets were washed twice with 200 µL ice-cold 70% ethanol and air-dried. As in fRFLP, the dry pellets were resuspended in 40 µL deionized formamide containing 0.25 µL Size Standard-600 and overlaid with a drop of mineral oil. The fAFLP fragments were then resolved on the CEQ 2000-XL automated sequencer using the Frag-4 separation method.

Post-AFLP digestion with DdeI cut both in the adapter/primer sequences and at internal sites in the amplified products. All of these cut sites were subsequently labeled. In addition to supplementing genetic information about the samples, the presence of internal cut sites in larger products can bring the peaks down into the effective resolution range of the capillary sequencer (60–600 bp on default settings). However, in some cases, it may be desirable to engineer adapters and primers carrying recognition sites for rare-cutting enzymes to minimize the digestion of AFLP amplification products.

Figure 1. Digestion of the Attacin A gene of D. melanogaster with only three restriction enzymes distinguishes six polymorphisms among four alleles. (A) Schematic representation of the pattern of restriction sites in the four alleles. The numbers along the top row represent the positions of the cut sites along the 751-bp product. (B) Expected fragment sizes in the four lines, following digestion with each of the three enzymes. Fragments smaller than 60 bp are not detected, but all of the other peaks were accurately detected and sized within 2 bp.

Figure 2. A zoomed-in view of chromatograms showing fRFLP peaks between 90 and 220 bp in lines 2CPA 1 and 2CPA 14. The high resolution of the automated sequencer allows easy identification of a 9-bp insertion/deletion polymorphism [112 vs. 121 bp in the red (T-labeled) channel; 210 vs. 219 in the blue (C-labeled) channel, and 152 vs. 161 in the black (G-labeled) channel]. Note the clear distinction between 191- and 193-base fragments in the blue channel of 2CPA 14. Green peaks are the CEQ DNA Size Standard-600 internal reference size standard.
RESULTS AND DISCUSSION

Using only three restriction enzymes and a single electrophoretic run of fRFLP, we typed six polymorphisms, including a 9-bp insertion/deletion polymorphism, in the Attacin A gene from four lines of D. melanogaster (Figures 1 and 2) at a post-digestion cost of about $0.45/site (Table 1). We also used fAFLP to generate a genomic fingerprint for the hydrothermal vent tubeworm R. piscesae (Figure 3) at a labeling cost of $0.45, without needing to buy a fluorescently labeled primer. The total per-site cost of fRFLP varies depending on the price of the diagnostic restriction enzymes and can be reduced by higher degrees of multiplexing. We have had success in multiplexing by pooling independent reactions before restriction digestion, pooling multiple digests before fluorescent labeling (data not shown), and simultaneously

Figure 3. Chromatogram showing fAFLP peaks obtained by using DdeI to digest an unlabeled R. piscesae AFLP reaction and then incorporating a fluorescent ddUTP terminator nucleotide into the cut site (red peaks). Green peaks are the CEQ DNA Size Standard-600 internal reference size standard.
electrophoresing multiple independently labeled products.

Because automated sequencers can distinguish fragments that differ in size by a single nucleotide (Figure 2) and can detect hundreds of fragments in a single electrophoretic run, the only practical limit to the degree of RFLP multiplexing that can be employed seems to be in the informatics of analyzing the output. The CEQ Fragment Analysis software does not have a pattern-recognition component that would allow for the translation of highly multiplexed RFLP peak patterns into component multi-locus genotypes, but the software does export a tab-delimited text file that lists, among other attributes, the estimated size in base pairs, and under-peak area for every peak in each fluor channel. It should be straightforward to program an independent script that analyzes the CEQ text output for expected FRLP genotype patterns. Without the use of automated genotype calling, we have found 6-fold multiplexing, with two independent PCR products digested and labeled in each the C, G, and T channels (3–10 peaks in each channel), to provide an adequate compromise among cost per assay, throughput, and simplicity of analysis. For fAFLP analysis, a macro that generates a presence/absence table for all peaks in each fluor channel in a given sample set is available from Beckman Coulter technical support. This macro, along with other improvements that ease data analysis, is incorporated into the next generation CEQ 8000 software for more seamless fAFLP analysis.

The ability of automated sequencers to resolve extremely small size differences accurately can also be exploited in the examination of microsatellite repeats. Although we have not tested the possibility, we believe that the post-labeling procedure used in fRFLP and fAFLP could also be used in microsatellite analysis if rare-cutting restriction enzyme recognition sites are incorporated into the amplification primers. Non-overlapping repeat size ranges and the use of multiple fluoros could allow a high degree of multiplexing in microsatellite analysis. Our labeling method could conceivably even be applied to the inexpensive generation of the internal size standard required in each well for accurate sample peak sizing.

Overall, both RFLP and fAFLP provide a simple, rapid, and inexpensive means of genotyping moderate numbers of individuals at a large number of loci with no need to order allelespecific or fluorescently labeled oligonucleotides. It is not even necessary to have prior knowledge of the polymorphisms that will be typed because both methods can be used to query anonymous or uncharacterized sequences. The cost, ease, and flexibility of these methods make them appropriate for many medium-throughput applications on a scale likely to be employed by individual research laboratories.

REFERENCES

We thank Cindy Jarvis and John Black at Beckman Coulter for their support of this work. We also thank Kim Juniper, the chief scientist of the May 2001 cruise to the Juan de Fuca Ridge, the crews and pilots of the CCGV John P. Tully, and the ROV ROPOS for allowing tubeworm collection. This work is supported by the National Institutes of Health grant no. AI46402 to A.G.C. Tubeworm collections were supported by the National Underseas Research Program grant no. UAF01-0042 to Stephen Schueffer, Charles Fisher, and Stéphane Houdez. Address correspondence to Brian P. Lazzaro, Department of Molecular Biology and Genetics, 107 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA. e-mail: bplazzaro@psu.edu

Received 13 March 2002; accepted 22 May 2002.

Brian P. Lazzaro, Bonnielin K. Sceurman, Susan L. Carney, and Andrew G. Clark
Pennsylvania State University
University Park, PA, USA